src package¶
Subpackages¶
Submodules¶
src.compare_references module¶
This script compares different reference systems against each other.
-
src.compare_references.
detect_outlier
(data, column, reference_column, z_threshold=3, maximum_deviation=0.25)¶ Detect outliers based on z-score and maximum deviation.
- Parameters
data (DataFrame) – DataFrame with the data
column (str) – name of the column under consideration
reference_column (str) – name of the reference column matching the data column
z_threshold (float) – cutoff value for z-score
maximum_deviation (float) – cutoff value for deviation between systems
- Returns
boolean vector indicating outliers
- Return type
np.array
-
src.compare_references.
draw_reg_line_and_info
(data, outlier, column, reference_column, axis)¶ Plot regression line and parameters.
- Parameters
data (DataFrame) – DataFrame with actual data
outliers (np.array) – Boolean array, indicating if the row is an outlier
column (str) – name of the column under consideration
reference_column (str) – name of the reference column matching the data column
axis (matplotlib.axis) – axis to plot on
- Returns
None
-
src.compare_references.
reg_line
(x, y)¶ Calculate regression line for data.
- Parameters
x (list[float]) – data x values
y (list[float]) – data y values
- Returns
x values of the regression line, y values of the regression line, calculated regression line parameters (gradient, intercept, r_value, p_value, std_err, rmse, mae), p-values of the statistical model, confidence interval
- Return type
tuple(list[float], ..)
src.pipeline_playground module¶
This script is meant to demonstrate the usage of the pipeline. Please note inline documentation.